Sharp optimality and some effects of dominating bias in density deconvolution

نویسندگان

  • Cristina BUTUCEA
  • Alexandre B. TSYBAKOV
چکیده

We consider estimation of the common probability density f of i.i.d. random variables Xi that are observed with an additive i.i.d. noise. We assume that the unknown density f belongs to a class A of densities whose characteristic function is described by the exponent exp(−α|u|r) as |u| → ∞, where α > 0, r > 0. The noise density is supposed to be known and such that its characteristic function decays as exp(−β|u|s), as |u| → ∞, where β > 0, s > 0. Assuming that r < s, we suggest a kernel type estimator that is optimal in sharp asymptotical minimax sense on A simultaneously under the pointwise and the L2-risks. The variance of this estimator turns out to be asymptotically negligible w.r.t. its squared bias. For r < s/2 we construct a sharp adaptive estimator of f . We discuss some effects of dominating bias, such as superefficiency of minimax estimators. Mathematics Subject Classifications: 62G05, 62G20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp optimality for density deconvolution with dominating bias

We consider estimation of the common probability density f of i.i.d. random variables Xi that are observed with an additive i.i.d. noise. We assume that the unknown density f belongs to a class A of densities whose characteristic function is described by the exponent exp(−α|u|r) as |u| → ∞, where α > 0, r > 0. The noise density is supposed to be known and such that its characteristic function d...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

On Efficiency Criteria in Density Estimation

We discuss the classical efficiency criteria in density estimation and propose some variants. The context is a general density estimation scheme that contains the cases of i.i.d. or dependent random variables, in discrete or continuous time. Unbiased estimation, optimality and asymptotic optimality are considered. An example of a density estimator that satisfies some suggested criteria is given...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004